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Using and Evaluating Differential Modeling in

Intelligent Tutoring and Apprentice Learning Systems

David C. Wilkins, William J. Clancey and Bruce G. Buchanan

Knowledge Systems Laboratory
Department of Computer Science

Stanford University
Stanford, CA 94305

Abstract

A powerful approach to debugging and refining the knowledge structures of a

problem-solving agent is to differentially model the actions of the agent against

a gold standard. This paper proposes a framework for exploring the inherent limi-

tations of such an approach when a problem solver is differentially modeled against

an expert system. A procedure is described for determining a performance upper

bound for debugging via differential modeling, called the synthetic agent method.

The synthetic agent method systematically explores the space of near miss training

instances and expresses the limits of debugging in terms of the knowledge represen-

tation and control language constructs of the expert system.

1 Introduction

Artificial Intelligence has long been interested in methods to automatically refine

0 and debug an intelligent agent. This is a central concern in machine learning and

automatic programming, where the agent to be improved is a program. It is also

a central concern in intelligent tutoring, where the agent to be improved is a hu-

man problem solver. Many Al systems for improving an intelligent agent involve
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differential modeling of the agent against the observable problem-solving behavior

of another agent. We focus on the situation where one of the agents is a knowledge-

based expert system and the knowledge structures to be improved encode factual

information that is declaratively represented'.

This paper describes the synthetic agent method, which allows calculation of

a performance upper bound on improvement to an intelligent agent attainable by

differential modeling of the agent against an expert system. A performance up-

per bound identifies missing or erroneous knowledge in an intelligent agent that a

particular differential modeling system is inherently incapable of identifying. By

contrast, most performance evaluation procedures aim to determine a performance

lower bound; they experimentally demonstrate that a particular differential model-

ing system can successfully identify some missing or erroneous knowledge.

The synthetic agent method involves replacing the human problem solver in a

Rdifferential modeling scenario with a synthetic agent that is another expert system.

The knowledge in the synthetic agent expert system is systematically modified to be

slightly different than the knowledge in the original expert system. The knowledge

in the synthetic agent is modified to be slightly 'better' in an apprenticeship learning

scenario and slightly 'worse' in an intelligent tutoring scenario.

This paper is organized as follows. Section 2 surveys previous and current

work on improving an intelligent agent via differential modeling. Section 3 identi-

fies important performance evaluation issues related to evaluation of a differential

modeler. Section 4 presents and discusses the synthetic agent method. Finally,

Section 5 describes an application of the synthetic agent method that is currently

underway.

This paper presents our framework for evaluating a differential modeling sys-

tem. No experimental results are given. A future paper will describe the use of the

framework to evaluate the ODYSSEUS modeling program (described in Section 5) in

the context of intelligent tutoring and apprenticeship learning.

'As much domain-specific knowledge as possible is declaratively represented in a well designed

knowledge-intensive expert system. Domain-specific procedural knowledge is contained in an expert
system shell for the generic problem class (Clancey, 1984).

3
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2 The Process of Differential Modeling

Many AI systems that debug and refine an intelligent agent employ a method called

differential modeling; this is the process of identifying differences between the ob-

served behavior of a problem-solving agent and the behavior that would be expected

in accordance with an explicit model of problem solving.

Statement of Problem

PSDME

Problem Differential Expert
Solver Modeler System

Answer Answer

Knowledge Differences
Between PS and ES

Figure 1: A general model of the differential modeling process.
PS solves a problem, and DM finds differences between knowledge
structures of PS and ES. In this paper, equal attention is given to
the situation of apprenticeship learning where PS is a human ex-
pert and the goal is to improve ES; and the situation of intelligent
tutoring where PS is a student and the goal is to improve PS.

The differential modeling process is illustrated in Figure 1. The three major

elements are a problem solver (PS), a differential modeler (DM), and a knowledge-

based expert system (ES). The task of the DM is to identify differences between the
knowledge structures of PS and ES in the course of watching PS solve a problem, for

example a medical diagnosis problem. In the figure, Answer consists of all observable

behavior of the respective problem solver. The DM can be quite complex and can

easily exceed the complexity of the ES.

4
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Two major tasks that confront a DM are global and local credit assignment,

which are performed by a global and local learning critic, respectively. The global

critic determines when the observable behavior of PS suggests a difference between

the knowledge structures of ES and PS. In such a situation, the local critic is

summoned to identify possible knowledge differences between ES and PS that are

suggested by the actions of PS. A complete learning system consists of a global critic,

local critic and a repair component (Dietterich and Buchanan, 1981); discussion of

the repair stage is beyond the scope of this paper.

2.1 Previous work in differential modeling

AI systems that employ a differential modeling approach to debugging and refining

a problem-solving agent are found in the areas of machine learning, automatic

programming, and intelligent tutoring. We first describe systems that do not employ

a knowledge-based expert system as the explicit model of problem solving and then

describe systems that do.

The earliest such systems were in the rea of machine learning, notably,

Samuel's checker player and Waterman's poker player (Samuel, 1963; Waterman,

1970). The PS used by Samuel's DM program was a book of championship checker

games. The DM global critic task was accomplished by comparing the move of PS

to the move that Samuel's program made in the same situation. The local critic task

was accomplished by adjusting the coefficients of a polynomial evaluation function

for selecting moves so that the action of the program equaled the action of PS. A

recent example of machine learning research that uses a differential modeling ap-

proach is the PRE system for theory-directed data interpretation (Dietterich, 1984).

PRE learns programs for Unix commands from examples of the use of the commands.,14.

The DM employs constraint propagation to identify differences between the PS and

the programs for commands.

In automatic programming, the synthesis of LISP and PROLOG functions from

example traces falls under the rubric of debugging via differential modeling (Bier-

mann, 1978; Shapiro, 1983). The PS consists of the input/output behavior of a

5. I



correct program. The DM modifies the program being synthesized whenever it

does not give the same output as PS when given the same input.

In intelligent tutoring the goal is to 'debug' a human problem solver. Many

intelligent tutoring systems contain an expert system and use a differential model-

ing technique, including the WVEST program in the domain of games (Burton and

Brown, 1982), SOPHIE III and GUIDON in the domain of diagnosis (Brown et al.,

19S2: Clancey, 1979), and the MACSYMA-ADVISOR in the domain of symbolic inte-

gration (Genesereth. 19S2). SOPHIIE III uses an expert system for circuit diagnosis

as an aid in isolating hypothesis errors in the behavior of students who are perform-

ing electronic troubleshooting. GUIDON is built over the MYCIN expert system for

medical diagnosis (Buchanan and Shortliffe, 1984); student hypothesis errors are

discovered in the process of conducting a Socratic dialogue.

Recent research within machine learning also uses an expert system as the

explicit model of problem solving, especially within the subarea of apprenticeship

learning. Apprenticeship learning is defined as a form of learning that occurs in

the context of normal problem solving and uses underlying theories of the problem

solving domain to accomplish learning. Examples of apprenticeship learning systems

are LEAP and ODYSSEUS. The LEAP program refines knowledge bases for the VEXED

expert system for VLSI circuit design (Mitchell et al., 1985). PS is a circuit designer

who is using the VEXED circuit design aid and the underlying theory used by the DM

is circuit theory. ODYSSEUS refines and debugs knowledge bases for the IIERACLES

.4 expert system shell, which solves problems using the heuristic classification method
.: .- (Wilkins, 1986). When the ODYSSEUS problem domain is medical diagnosis, PS

is a physician diagnosing a patient. The DM uses two underlying theories, the

* principal one being a strategy theory of the problem-solving method. ODYSSEUS is

also applicable to intelligent tutoring; it functions as a student modeling program

for the GUIDON2 intelligent tutoring system (Clancey, 1986a).

,0,1
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2.2 Assumptions and issues in differential modeling

Much of the power of an expert system derives from the quantity and quality of its

domain-specific knowledge. For the purposes of this paper, the principal function

of the differential modeler is to find factual domain knowledge differences between

the problem solver and the expert system. Our work assumes that the expert sys-

tem represents domain knowledge declaratively, including domain-specific control

knowledge. Further, as much as possible, the knowledge is represented indepen-

dently of how it will be used by problem-solving programs. This practice facilitates

use of the same domain knowledge for different purposes, such as problem solving,

explanation, tutoring and learning.

The framework provided by this paper for understanding the limits of de-

* 'bugging via differential modeling has been fashioned with the following assump-

"' tions in mind. First, we assume that an agent is differentially modeled against a
V' knowledge-based expert system that is capable of solving the problems presented

to the human PS. Second, we assume that the observed actions of the agent consist

of normal problem-solving behavior in a domain. And third, we assume that the

goal of the differential modeling system is to discover factual domain knowledge

differences between the agent and the expert system's knowledge base, as opposed

to the discovery of procedural control knowledge differences; procedural knowledge

involves sequencing constructs such as looping and recursion.

There are many open questions regarding debugging via differential modeling

against an expert system. For instance, what are the types of knowledge in the PS

that can and cannot be debugged using a differential modeling approach? What

characteristics and organization of an ES facilitate differential modeling? What

characteristics and organization impose inherent limitations? How can the strengths

and weaknesses of a particular DM be best described? The evaluation methodology

proposed in this paper, called the synthetic agent method, provides a framework

for the exploration of these questions.

7



3 Performance Evaluation Issues

DM performance evaluation is intimately related to ES performance evaluation. The

function of a DM is to improve the performance of an ES and so DM performance

evaluation requires ES performance evaluation. Although ES evaluation is a difficult

and time consuming task, there is agreement on the general approach that should be

taken when ES is an expert system program. Examles of performance evaluation

studies based on a sound methodology are the evaluations of the MYCIN, INTERNIST

and RL expert systems (Yu et al., 1979; Miller et al., 1984; Fu and Buchanan, 1985).

Two major functions of a DM are global and local credit assignment 2. The
general problem of assessing the limits of a DM consists of finding performance

upper bounds on a DM's global and local critics. The difficulty of these functions

is very domain dependent. In the domain used to develop repair theory, the global
critic merely has to determine whether a student's answer to a subtraction problem

is correct (Brown and VanLehn, 1980). Sometimes a DM has a person perform

the global credit assignment, for example in LEAP and MACSYMA-ADVISOR. In very

difficult domains a DM might have a person perform both global and local credit

assignment; TEIRESIAS takes this approach when debugging MYCIN (Davis, 1982).

TEIRESIAS can be viewed as an intelligent editor that allows an expert to perform

global and local credit assignment while watching MYCIN solve problems.

In domains where expertise involves heuristic problem solving, having a pro-

gram perform global credit assignment is often very difficult. In a medical appren-

ticeship, a student may recognize that his or her knowledge is deficient when he or
she can no longer make sense of the sequence of questions that the physician asks

the patient. Since a weakly plausible explanation for any sequence of questions of-
ten exists, this can be very difficult to implement in a computer program. A similar

situation exists in complex games such as chess or checkers. There is usually no way

to know that a given move is necessarily bad; it depends on what follows. Samuel's

checker player solved the global critic problem by declaring a discrepancy to exist

'Recall from section 2 that the global critic notices that something is wrong and the local critic
determines which part of the knowledge base is responsible for the error. A learning program consists
of a global and local critic and a repair component.

8
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whenever thc expert (e.g., the book move) and the checker program recommended

different moves at a particular board configuration.

There are often many different changes the local critic can make to effect an

improvement in the performance element. The selection process is usually based

on which modification leads to the best improvement in the performance element.

Selection is very much affected by how 'improvement' in defined. This is further

discussed in Section 3.2.

3.1 Performance evaluation and the synthetic agent

method

* The synthetic agent method proposed in this paper is considerably different from

standard performance evaluation methods in two fundamental ways. The purpose

of the remainder of Section 3 is to explain and justify these aspects of the synthetic

agent method. In Section 3.2 we argue that a fruitful evaluation criteria for a

knowledge-based system should be quality of the individual knowledge elements,
not the quality of the problem solving performance of a particular problem-solving

program. These metrics only partially overlap and certainly conflict in the short
term. In section 3.3, we describe how the focus of the proposed synthetic agent

method is to delineate a performance upper bound. A performance upper bound

describes where and under what conditions a debugging system for a problem solver

must fail. By contrast, a standard evaluation approach aims at showing the extent
* to which a debugging system can succeed. Further, instead of characterizing the

limits of debugging in terms of a percentage of problems that cannot be solved, the

synthetic agent method characterizes the performance upper bound in terms of the

knowledge representation language and the inference constructs used in the expertU system.

9
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3.2 Knowledge-oriented vs. performance-oriented valida-

tion

The ultimate goal of a DM is to improve the performance of a PS or ES. The

architecture of knowledge-based systems requires a shift in our concept of improved

performance. Ve refer to the type of validation technique we advocate as knowledge-

oriented validation and distinguish it from the traditional practice of performance-

oriented validation.

Performance-oriented validation requires that modifications to a particular

problem-solving program improve problem-solving performance. Because this type

of validation has traditionally focused on improved performance with respect to a
single problem-solving program, the veracity of the underlying knowledge has not

been of overriding concern. A system designed exclusively to maximize problem-
solving performance of a particular problem-solving program may use a method of

knowledge representation in which the semantics of the domain knowledge cannot

be represented easily, if at all. A polynomial evaluation function for rating checker

positions, for example, captures none of the meaning of its terms.

Knowledge-oriented validation might be defined as performance-oriented vali-

dation that prohibits lessening the truth of individual knowledge elements solely for
the sake of problem-solving performance. The advent of large declarative knowledge

bases used by multiple problem solving programs makes this perspective important.

Examples of multiple problem-solving programs that might use the same medical
knowledge base are programs to accomplish medical diagnosis, knowledge acquisi-

tion, intelligent tutoring, and explanation. When multiple programs use the same

declaratively-specified factual knowledge base, it is helpful to specify knowledge

in a manner that is independent, so far as possible, of its use. Knowledge-based

validation accomplishes this by requiring that changes to the knowledge base be

semantically meaningful.

Suppose we wish to be faithful to the traditional performance-oriented vali-
. dation paradigm when using multiple-purpose knowledge bases. This requires that
%j Ievery time a learning program finds a change to the knowledge base that will improve

10
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one problem-solving program, before that change can be recorded, the validation

method must insure that the aggregate performance of all programs is improved.

This policy wvill be expensive and computationally overwhelming. Further, pro-

grams for all the intended uses of a knowledge base are not necessarily in existence

at the time learning is taking place.

Another rationale for knowledge-oriented validation is our belief that perfor-

mance in the long term will be more correct and robust if the knowledge structures

are carefully developed. Moreover, when PS is a person, it is unrealistic, proba-

bly even unwise, to attempt to replace semantically-rich knowledge structures with

others that deviate radically from them merely to improve short-term performance.

It should be noted that to some extent all programs for improving an in-

telligent agent aim at both good performance and good knowledge; nevertheless,

almost all past research in machine learning, intelligent tutoring and automatic

programming has adopted a pure performance-oriented validation approach. This

is especially true in automatic programming, where any mutation to the program

to be debugged is judged to be acceptable if it causes the program to produce the

correct output when given a correct input/output training instance (Shapiro, 1983).

In machine learning, one of the best systems for refining an expert system

knowledge base is the SEEK2 program for the EXPERT expert system shell (Gins-

berg et al., 1985). This learning system takes a performance-oriented validation

approach. One possible input to SEEK2 is a representative set of past solved cases

and an initial knowledge base of rules. Given this input, SEEK2 attempts to modify

elements of the knowledge base so as to maximize the problem-solving performance

of the EXPERT expert system on the given representative set of solved problem cases.

In EXPERT, the strengths of inexact rules in the knowledge base are represented us-

ing certainty factors (CFs). Examples of modification operators used by SEEK2 to

improve performance are LOWER-CF and RAISE-CF (Ginsberg, 1986). When a repre-

*Q sentative set of past cases is present, the strengths of inexact rules are determined,

since certainty factors can be given a strict probabilistic interpretation (Heckerman,

1986). We strongly believe that an arbitrary change to the strength of a rule just

to improve performance is unjustifiable and unnecessary (Wilkins and Buchanan,

* 11



1986). The cost of this improved performance is a knowledge base that may con-
tain incorrect knowledge. The SEEK2 refinement approach is not an instance of

knowledge-oriented learning; it does not use knowledge-oriented validation.

A good example of hnowledge-oriented learning is repair theory in the domain
of subtraction problems (Brown and VanLehn, 1980). Repair theory is concerned

with detecting underlying bugs, given the observable problem solving behavior of
students. Repair theory has a procedural model of problem solving that claims to be
a plausible model of the associated human skill; bugs of students are correlated with

possible bugs in the problem-solving procedure for subtraction. Repair theory is
similar in spirit to the synthetic agent method we propose for assessing a differential

modeling system. Repair theory generates most of the significant possible bugs by
deleting parts of the procedural knowledge; likewise we expect our approach to
generate most of the significant possible types of bugs in the declarative domain

knowledge base, mainly by deleting parts of the knowledge base, as we shall describe
in Section 4. The main difference is that in the repair theory model of subtraction

the PS and ES knowledge is almost completely procedural, whereas we are interested
in factual knowledge is declaratively represented.

• .3.3 Capability-oriented vs. limitation-oriented validation

A typical way of validating that a DM improves an ES involves using a disjoint set

of validation and training problem sets. The ES solves the validation problem set

and its performance is recorded. Then the DM improves the ES while watching

a human expert PS solve a training problem set. Finally ES solves the validation

problems again; the amount of improvement in performance provides a measure of

the quality of the DM.

'.:

This scenario establishes a lower bound on the quality of a DM. By increasing

the size of the training problem set, DM might improve ES even more. We refer to

4.. validation methods that establish a lower bound on the quality of a DM as capability-

oriented. For a given set of training and validation problems, capability-oriented

validation shows that the DM is responsible for a more capable ES.

" 12
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Another method of validating a DM is to have the DM watch a student solve a

training problem set. Let us assume that the student exhibits a representative set of

the types of domain knowledge errors that could be made in the problem domain.

A domain expert can manually identify the domain knowledge errors connected

with each training problem. This manual analysis provides a performance upper

bound with respect to this training set for the DM, and the DM modeling program

is measured against this standard. The goals of this type of manual analysis and

our proposed automated analysis using the synthetic agent method are identical, in

the case where the student and the problem set have been both constructed so as

to allow all possible types of domain knowledge errors to be made.

We desire to know those types of differences in an expert system knowledge

base that cannot be detected or corrected via differential modeling. In contrast

to the capability-oriented approach, our validation approach aims at determining

when the differential modeler must fail - we are limitation-oriented. For example,

a limit of a program for inducing LISP functions from examples might be that the

program can't induce cases that require certain types of loop constructs. In our

work, we have focused on showing certain conditions that force the differential

modeling approach to fail under the most favorable of conditions, the single fault

assumption. The multiple fault assumption would allow determination of a broader

performance upper bound.

4 Synthetic Agent Method of Validation

%The apprenticeship learning and tutoring scenarios shown in Figures 2 and 3 involve

two agents: a person and an expert system. The person serves as an expert and stu-

dent, in the context of apprenticeship learning and intelligent tutoring, respectively.

The synthetic agent method consists of replacing the person with a synthetic agent,

which is another expert system, in order to experiment with and validate the dif-

ferential modeling system objectively. The knowledge in the synthetic agent expert

system is modified to be slightly different from the knowledge in the original ex-

pert system. The knowledge is modified to be slightly 'better' in an apprenticeship

13



learning scenario and slightly 'worse' in an intelligent tutoring scenario.

Problem Statement

PS DM ES

Human Differential Apprentice
Expert Modeler Expert System

Answer Differences Between Answer
Knowledge Structures

of PS and ES

Figure 3: Apprentice learning scenario: Apprentice expert system
watches human expert through the differential modeling program,
with the goal of improving the apprentice program's knowledge.

An advantage of the synthetic agent method is control over interpersonal vari-

ables involved in differential modeling. An example of an interpersonal variable is

the problem-solving style of a PS, as exemplified by the set of strategic diagnostic op-

erators used by the PS. Diagnostic operators specify the permissible task procedures

that can be applied to a problem as well as the allowable methods for achieving the

task procedures. Examples of problem-solving operators in the domain of diagnosis

include: ask general questions, ask clarifying questio:.s, refine hypotheses, differen-

tiate between hypotheses, and test hypothesis. Another interpersonal variable is

the quantity of domain-specific knowledge that the PS possesses.

While control of interpersonal variables almost always leads to an incorrect

DM performance lower bound, conclusions reached concerning a performance upper

bound are sound when interpersonal variables are controlled. If a system is inher-

ently limited under the most optimal assumptions possible for differential modeling,

it will still be inherently limited in those settings that involve a less optimal differ-

ential modeling setting.

14
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Problem Statement

PS DM ES

Student Differential Expert System
Modeler

Answer Differences Between Answer
Knowledge Structures

of PS and ES

Figure 4: Intelligent tutoring scenario: Expert system watches
student through the differential modeling program, with the goal
of improving the student's knowledge.

In the learning and tutoring scenarios, the synthetic agent method treats the

original expert system knowledge base as a "gold standard". The apprentice ES

and the student PS always have a deficiency with respect to this gold standard. In

this paper we restrict our analysis to the situation where the apprentice's knowledge

differs from the gold standard by a single element of knowledge; hence we have a

single fault assumption. Two types of knowledge base discrepancies are possible:

missing knowledge and erroneous knowledge. The synthetic agent method proce-

dure described in section 4.1 shows how deletion of knowledge can represent the

space of missing and erroneous knowledge. Other methods for creating erroneous

knowledge are described in section 4.3.

For a given problem statement, a distinction is made between referenced, ob-

servable, and essential knowledge in the ES's knowledge base. The relation between

these categories is illustrated in Figure 4. Referenced knowledge is simply knowledge

that is accessed during a problem solving case. Observable knowledge is knowledge

whose removal leads to different external observable behavior of a PS, either in the

sequence of actions that the PS exhibits or the final answer. Essential knowledge is

15
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Domain Knowledge Base

Referenced Knowledge

Observable Knowledge

Essential Knowledge

Figure 5: The relation between different categories of knowledge,
with respect to a particular problem case.

knowledge whose removal leads to a significantly different final answer.

Of most concern is the apprentice's ability to acquire the essential knowledge
elements connected with a problem statement. These are the relations most im-

portant for solving a given case. For plausible reasoning systems, what comprises a

significantly different answer needs to be specified. For instance, if there are multi-

ple diagnoses, the significance of the order in which the hypotheses are ranked needs
to be determined. Acquisition of elements that are observable but not essential are

also of interest, since they can be essential elements with respect to another problem

statement.

The procedure for calculating a performance upper bound on a differential

modeling system is now presented.
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4.1 The synthetic agent method

Step 1. Create synthetic agent. Replace PS with a synthetic agent: a copy of ES

with initially the same domain knowledge.

Step 2. Solve problem case. Solve a problem using PS and save the solution trace,

i.e., the observable actions of PS and the final answer.

Step 3. Identify observable knowledge. For a particular problem case, collect all

elements in the knowledge base that were referenced by PS during problem

solving. Identify the observable knowledge: the subset of the referenced knowl-

edge whose removal would lead to a different solution trace or a different final

answer.

Step 4. For each observable kno, ledge element:

Step 4a. Remove the element from ES. In an apprenticeship learning sce-

nario this creates an apprentice expert ES with missing knowledge. In

an intelligent tutoring scenario the element removed from the ES is de-

clared to be erroneous3 . Since the element is still present in PS, the

synthetic student PS has erroneous knowledge.

Step 4b. Detect and localize knowledge discrepancy. Have the PS solve the

problem case. See if DM can detect (the global critic problem) and

localize (the local critic problem) the knowledge difference.

Step 5. For each observable knowledge element:

Step 5a. Remove the element from PS. In an intelligent tutoring scenario

this creates a synthetic student PS with missing knowledge. In an appren-

ticeship learning scenario the element removed from the PS is declared

to be erroneous3 . Since the element is still present in ES, the apprentice

expert ES has erroneous knowledge.

Step 5b. Detect and localize knowledge discrepancy. Have the PS solve the

problem case. See if DM can detect (the global critic problem) and

localize (the local critic problem) the knowledge difference.

aN.B. This element of knowledge is treated as erroneous for purposes of validation. In reality,
the element is true knowledge.
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4.2 Discussion of synthetic agent miethod

An expert systei m's explanation facility can be li(,l)ful in locating the observable

knowledge with respect to a given problem case. One of the hallmarks of a good

expert system is its ability to explain its own reasoning. So it is not too much to

ask for those pieces of knowledge used on a problem case, and a good explanation

systeni might even be able to identify the essential knowiedge. At worst, given

the pieces of knowledge that were used to solve a particular problem, the essential

pieces of knowledge can be determined by experimentation. Usually, only a smal.
amiouint of an expert system's domain knowledge is observable with respect to a

given problemm, and our experiences in the medical diagnosis domain have shown us
that only a small atlo)uilt )f the observable knowledge is essential knowledge.

Some knowledge that is referenced by the expert system may not have ob-

s(ervable co(nse(luences, even if it is used by the problem solver, since the removal

S"of knowl(lge does not always effect the external behavior of a problem solver. For

instan'e. in MYCIN and NEOMYCIN, terms that represent medical symptoms and

measurements, such as patient weight, have an ASKFIRST property. The expert

system uses the value of this property to decide whether the value '-f a variable is

first determined by asking the user or first determined by derivation by some other
method, such as from first principles. However, if the system does not possess tech-

niques for deriving the information from other principles, then the external behavior

of the system is the saine regardless of the value of the ASKFIRST property.

\When testing the global critic in steps 4b and 5b of the synthetic agent

imethodl, part of the assessment must relate to whether the apprentice detects

• knowledge base differences close to the point in the problem-solving session where

the different knowledge was used. This temporal proximity is important, since the

problemn-solving context at this point in the problem-solving session strongly focuses

tie search for missing or erroneous knowledge.
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4.3 Categories of errors

The knowledge organization that we focus upon specifies all factual domain knowl-

edge in a declarative fashion. In such a knowledge base. there are two main cat-

egories of errors: missing and erroneous knowledge. Missing knowledge is absent

from the knowledge base, and erroneous knowledge is factually incorrect knowledge

that is present in the knowledge base.

The space of missing knowledge is easy to generate, especially with the single

fault assumption. Recall that the original expert system serves as our gold stan-

dard and the domain knowledge in the expert system is declaratively represented.

Hence, the number of single faults from missing knowledge is equal to the number

of elements in the declarative knowledge base.

The space of erroneous knowledge is much more difficult to describe. The

synthetic agent method takes a novel approach to the problem in steps 5a and

6a. An erroneous element is created by declaring a correct knowledge element to

be erroneous for purposes of validation. We are also considering other approaches.

Much of the knowledge is represented declaratively and typed. Therefore, erroneous

knowledge can be generated by substituting different values for the knowledge in

the range of the type, as long as the assumption can be made that the erroneous

knowledge is at least correctly typed by the problem solver. The space of possible

variations of declarative associational rule knowledge is significantly reduced by the

practice used in the HERACLES' expert system shell of factoring different types of

knowledge from the domain knowledge, such as causal, definitional, and control

knowledge (Clancey, 1986b).

5 Application of Synthetic Expert Method

Our investigations of a performance upper bound for a differential modeler are be-

ing performed in the context of the HIERACLES and ODYSSEUS systems. IIERACLES

is an expert system shell that solves classification-type prol)e(:ms using the heuris-
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tic classification method (Clancey, 1985). The ODYSSEUS program differentially
models a PS against any ES implemented using the ItERACLES expert system shell
(Wilkins, 1986). When PS is a human expert, ODYSSEUS functions as a knowledge
acquisition program for the TIERACLES expert system shell. When PS is a student,
ODYSSEUS functions as a student modeling program for the GUIDON2 intelligent
tutoring system, which is built over HERACLES.

Problem Statement

PS DM ES

"Expert" Apprentice
Expert System LifR i Expert System

Generator

Global Critic
Answer Expert System Answer

Local Critic
Expert System

Differences Between
Knowledge Structures

a' of PS and ESS

Figure 6: Synthetic agent validation situation for apprenticeship
... learning in which the role of the PS has been filled by a synthetic

expert system. In apprenticeship learning, the DM watches PS to
improve ES's knowledge structures.

V: In HERACLES, domain knowledge is encoded using a relational language and
MYCIN-type rules (Clancey, 1986b). The knowledge relations of the relational lan-

guage are predicate calculus representations of the domain knowledge, written using

20



the logic programming language MRS. For example, an instantiation of the propo-

sition (SUGGESTS $PARM $HYP) represents the fact that if a particular parameter

is true then this suggests that a particular hypothesis is true. An instantiation of

the template (ASKFIRST $FINDING $FLAG-VALUE) specifies whether the system

should first ask the user for the value of a finding, or derive the information from

existing information. The major domain knowledge base for HERACLES at this time

is the NEOMYCIN knowledge base for diagnosing meningitis and neurological prob-

lems (Clancey, 1984). A second effort in the sand casting domain is called CASTER

(Thompson and Clancey, 1986).

Three aspects of the HERACLES expert system shell facilitate the task of

differential modeling faced by ODYSSEUS. First, distinctions are made between the

different types of knowledge in IIERACLES' knowledge base, such as heuristic, def-

initional, causal, and control knowledge. Second, the method of reasoning, called

hypothesis-directed reasoning, approximates that used by human experts (Clancey,

1984). Hence, HERACLES can be viewed as a simulation of an expert's process of

diagnosis. Third, the control knowledge is explicitly represented as a procedural

network of subroutines and metarules that are both free of domain knowledge; the

subroutines and metarules use variables rather than specific domain terms (Clancey,

1986b). By contrast, the heuristic rules in MYCIN have a great deal of control knowl-

edge imbedded in the premises of the rules (Clancey, 1983; Buchanan and Shortliffe,

1984).

Figure 5 shows the place of the ODYSSEUS DM in the context of debugging an

apprentice expert system. The DM tracks the problem-solving actions of the PS step

by step. For each observable step of the problem solver, ODYSSEUS generates and

scores the alternative lines of reasoning that can explain the reasoning step. If the

*global critic does not find any plausible reasoning path, or all found paths have a low

plausibility, ODYSSEUS assumes that there is a difference in knowledge between the

human problem solver and the expert system. The local critic attempts to locate the
0.1I knowledge difference either automatically or by asking the expert specific questions.

* ODYSSEUS' analysis of problem-solving steps uses two underlying domain theories: a

strategy theory of the problem-solving method called hypothesis-directed reasoning

using the heuristic classification method, and an inductive predictive theory for

'V 21

%0.



I,'I
I

heuristic rules that uses a library of previously solved problen cases.

The ODYSSEUS global and local critics are themselves being implemented

as two IlERACLES-based expert systems. There are three reasons wvhy we choose to

' implement the critics as expert systems. First, the task that confronts the learning

critics is a knowledge-intensive task (Dietterich and Buchanan, 19S1), and expert

syst em techniques are useful for representing large amounts of knowledge. Second.

* with an expert system architecture, the reasoning method used by the critics can
'S'

be made explicit and easily evaluated, since the domain knowledge is declaratively

enico(led using IER ACLES' knowledge relations and simple heuristic rules. Third,

since ODYSSEUS is designed to improve any IIERACLES-based expert system, it can

th,,trticmallv improve itself in an apprenticeship learning setting.

Approximately sixty different knowledge relations in IIERACLES specify the

declarative domeain knowledge. It would be useful to know how successful the global

-1and local critics are at detecting discrepancies in the different knowledge relations

of the knowledge representation language. Are there certain types of knowledge re-
lations whose absence is always noticeable? Are there particular types of knowledge

whose absence is very hard to recognize? For example, ItERACLES represents final

diagnoses in a hierarchical tree structure; determining that a problem is caused by

a missing link in this structure may be very difficult for the apprentice to discover.
By contrast, it may be very easy to discover whether a trigger property of a rule is

missig. A trigger property causes the conclusion of a rule to treated as an active

hypothesis if particular clauses of the rule premise are satisfied. Clearly global and

local crcdit assignment are greatly affected by the complexity of the procedural

control !%iowledge ,,sed in the expert system shell.

6 Summary

With the proliferation of expert systems. methods of intelligent tutoring and ap-

prenticeship learning that are based on differential modeling of the normal problem-

solving behavior of a student or expert against, a knowledge-intensive expert system

9')
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should become increasingly common. The synthetic agent method is proposed as

an objective means of assessing the limits of a particular differential modeling pro-

gram in the context of intelligent tutoring and apprenticeship learning. The power
of a differential modeler is crucialhy dependent upon the expert system's method

of knowledge representation and control. The synthetic agent method provides a4

means of expressing the limitations of a differential modeler in terms of the knowi-

edge representation and control vocabulary.

The synthetic agent method involves a systematic perturbation of a progranm

that takes the place of the student or expert. Traditionally, methods of evaluating

a differential modeler have focused on a performance lower bound. The described

synthetic agent method focuses on establishing a performance upper bound. It

provides a means of exploring the extent that a differential modeling system is able

to detect and isolate an arbitrary difference between a knowledge base of an expert

0 system and the problem-solving knowledge of a tudent or expert. Our work to

(late confirms our belief that the task of differential modeling is easier the more an
expert system represents factual domain knowledge in a declarative fashion.

The validation framework described in this paper is being used to assess

the limits of the ODYSSEUS modeling program in the context of intelligent tutoring

and apprenticeship learning. Students and experts are being differentially modeled

against knowledge bases for the tIERACLES' expert system shell. This should lead

to a better understanding of the synthetic agent method, the ODYSSEUS modeling

program, and the extent to which t!ERACLES' method of knowledge representation

and control facilitates differential modeling.
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